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The widely used FD index of functional diversity is based on the construction of a dendrogram. This index has been the
subject of a strong debate concerning the choice of the distance and the clustering method to be used, since the method
chosen may greatly affect the FD values obtained. Much of this debate has been centred around which method of
dendrogram construction gives a faithful representation of species distribution in multidimensional functional trait space.
From artificially generated datasets varying in species richness and correlations between traits, we test whether any single
combination of clustering method(s) and distance consistently produces a dendrogram that most closely corresponds to
the matrix of functional distances between pairs of species studied. We also test the ability of consensus trees, which
incorporate features common to a range of different dendrograms, to summarize distance matrices. Our results show that
no combination of clustering method(s) and distance constantly outperforms the others due to the complexity of
interactions between correlations of traits, species richness, distance measures and clustering methods. Furthermore, the
construction of a consensus tree from a range of dendrograms is often the best solution. Consequently, we recommend
testing all combinations of distances and clustering methods (including consensus trees), then selecting the most reliable
tree (with the lowest dissimilarity) to estimate FD value. Furthermore we suggest that any index that requires the
construction of functional dendrograms potentially benefits from this new approach.

Functional diversity has been identified as a key component
of biodiversity for ecosystem functioning and sustainability
(Ives et al. 1999, Hooper and Dukes 2004, Petchey et al.
2004). In this way, biodiversity loss can be responsible for a
decrease in resilience or productivity (Loreau et al. 2001,
Bellwood et al. 2004, Petchey 2004). Despite the emerging
importance of the subject, no agreement exists about
quantifying functional diversity of a community of species,
though many indices have been recently proposed (reviewed
by Petchey and Gaston 2006). Indeed, there has been a
great deal of controversy over the statistical validity of these
indices (Petchey and Gaston 2007, Podani and Schmera
2007) as well as their properties and what they actually
measure (Ricotta 2005, Petchey and Gaston 2006). The FD
index suggested by Petchey and Gaston (2002) provides an
illustration of such controversy. FD is the total branch
length of a functional dendrogram (hierarchical classifica-
tion of the species according to their functional features). It
measures functional diversity at all ecological scales simul-
taneously (Petchey and Gaston 2002), and is neither
affected by units of characters nor by the splitting of a
species into two identical functional species (Mason et al.
2003). Moreover, FD has been applied to a variety of taxa:
mammals (Blackburn et al. 2005), plants (Thompson et al.

2005), birds (Petchey et al. 2007), fish (Mouillot et al.
2007) and zooplankton (Barnett et al. 2007), and the
frequency of its use is likely to increase.

A dendrogram-based functional classification of species
is carried out in three steps: (1) building the trait matrix
(containing the value of each species for each functional
trait); (2) calculating a matrix of distances between pairs of
species in functional trait space; and (3) constructing a
dendrogram to classify species according to the distance
matrix (Petchey and Gaston 2002). The choices of the
distance and of the classification method � steps (2) and (3)
respectively � are of crucial importance since they may lead
to different results.

Several distances are available in ecology (Bray�Curtis,
Manhattan, etc). But Euclidean and Gower distances are
the only two ones recommended to measure interspecific
functional dissimilarity based on trait values. In fact,
Petchey and Gaston (2002) employed Euclidean distance,
while Podani and Schmera (2006) advised the use of
Gower’s distance (which allows missing data and inclusion
of qualitative traits) even when all traits are quantitative.

There are also several clustering methods for construct-
ing a hierarchical classification (Legendre and Legendre
1998). Each one of these methods is based on particular
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criteria to aggregate species into hierarchical clusters. The
topology of the resulting tree varies according to the
procedure employed for the same initial distance matrix.
Consequently, numerical values of the total branch length
of the dendrogram (i.e. FD) also depend on the distance
and/or clustering algorithm used. However, there is a lack
of agreement over which method of constructing the
functional dendrogram gives the best representation of
species distribution in functional trait space (Podani and
Schmera 2006).

Thus, despite the broad use of the FD index, several
questions remain to be answered. To what extent does the
hierarchical classification represent the distribution of
species in functional space? Which is the most faithful
method of clustering? How can we improve the representa-
tion of the distance matrix by a hierarchical classification? Is
there any factor influencing the performance of cluster
algorithms? Does the same combination of distance and
clustering method(s) always perform best? These questions
are all crucial because the choice of a clustering method may
strongly influence the functional diversity value obtained
for a community. This problem was recently revealed by
Podani and Schmera (2006). Indeed, no previous studies
have quantitatively tested whether a single clustering
method consistently outperforms all others. The choice of
a clustering method remains arbitrary in functional ecology
and no consensual solution has been yet proposed despite
the popularity of FD.

In this paper, we present a novel procedure based on an
objective criterion to choose the most appropriate method of
constructing hierarchical dendrograms from functional trait
data. This method aims to find the combination of distance
and clustering algorithm(s) that best represents species
distribution in functional trait space. Because each clustering
algorithm has its flaws, we suggest also testing consensus trees
resulting from a combination of several clustering algorithms
to enhance the reliability of the classification and, ultimately,
the estimation of functional diversity.

Material and methods

Hierarchical classifications synthesise the multidimensional
distribution of objects (e.g. species, communities, assem-
blages) in a one-dimensional diagram. This procedure
results in a loss of information about the dispersion of
objects along each dimension summarized, resulting in
distortion of data representation (Legendre and Legendre
1998). Our purpose is to find the least altered representa-
tion of species in a functional multidimensional space
through a new method validated with simulated datasets.

Functional distance based on traits

To construct the distance matrix from artificial commu-
nities, we considered two distances. The Euclidean distance
between species a and b for N quantitative traits was
defined as:

EDab�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

i�1

(xia�xib)
2

vuut

with xia and xib being the values of trait i (variable) for
species a and b, respectively.

The Gower’s distance can cope with mixed scale types of
data (quantitative, interval, nominal or ordinal data, ratios,
missing values). The general Gower’s formula is given by:

GDab�

XN

i�1

wiabdiab

XN

i�1

wiab

where diab measures the dissimilarity between species a and
b for the variable i:

diab�
jxia � xibj

max(xi) � min(xi)

The weight wiab�0 when xia and/or xib is missing. In our
framework, there was no missing value, trait values were all
quantitative and each trait was equally weighted (wiab�1).
Consequently, the formula was reduced to:
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Construction of a consensus tree

There are several clustering methods available for hierarchi-
cally clustering species into a dendrogram. In the present
study, all methods tested belong to the family of hierarch-
ical agglomerative (or ascending) classifications: single
linkage, complete linkage, UPGMA, WPGMA, UPGMC,
WPGMC and Ward’s method (Table 1). Because clustering
procedures fail to perfectly fit data distribution in multi-
dimensional space, we tested whether using a consensus
algorithm would enhance the faithfulness of dendrograms.
Consensus algorithms make a synthesis from different
dendrograms into one classification which highlights the
concordant parts between the various methods relative to
the parts that disagree (Darlu and Tassy 1993). In short, the
algorithm builds the consensus tree that optimally repre-
sents several clustering methods. Several methods are
available to form a consensus tree. The algorithm adopted
here minimized the Euclidean distance between matrices
(according to Gordon and Vichi 2001):

Dc�
Xn

j�1

djc

where djc is the Euclidean distance between the cophenetic
distance matrix of dendrogram j and that of the consensus
dendrogram c, and n is the number of individual dendro-
grams being considered.

Although the selected algorithm produces the best
projection of the data according to its criteria, the quality
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of this representation can vary (contraction or dilation of
space) according to the topology and the branch length of
the resulting dendrogram. To assess the reliability of the
dendrogram, we evaluated the dissimilarity between initial
distance and cophenetic distance matrices, DM, using the
cophenetic correlation (Legendre and Legendre 1998).
Cophenetic correlation has already been used by Blackburn
et al. (2005) and Petchey et al. (2007) or discussed by
Petchey and Gaston (2006, 2007) to evaluate the quality of
the dendrogram which provided FD values. In this study,
the dissimilarity value, DM, is given by 1�c2; where c
stands for the cophenetic correlation coefficient (Pearson
correlation coefficient in our case). The objective was thus
to identify, among all combinations of distance and
clustering algorithm(s), the one that minimized the dissim-
ilarity between the initial distance matrix and the cophe-
netic distance matrix (DM�0 corresponds to no distortion
between distance matrices).

Theoretical datasets

To test this new flexible method in many different situations,
we created artificial communities in order to control two
parameters: species richness and correlation between func-
tional traits. Because FD generally measures the functional
diversity of a community using a dendrogram including all
species present in the regional pool (hereafter called species
assemblage) (Petchey and Gaston 2002), we defined two
reasonable species richness levels for our simulated assem-
blages: 20 and 40 species. All artificial species assemblages
were characterized by five simulated standardised functional
traits sampled among a normal distribution with a mean of 5
and a standard deviation of 1. Traits were either forced to be
all independent, or four of them were constrained to be
highly correlated (Pearson correlation coefficient higher than
0.9) with the fifth being entirely independent of the others.
We simulated one hundred assemblages for every combina-
tion of species richness levels and correlation levels (40
species with 5 independent traits; 40 species with 1
independent�4 correlated traits; 20 species with 5 indepen-
dent traits; 20 species with 1 independent�4 correlated
traits), giving a total of 400 artificial species assemblages.

Data analyses

The 7 ‘one-method’ clustering algorithms and the 120
potential consensus trees (from 2 to 7 combined trees)

multiplied by 2 distances made a total of 254 combinations
of distance-clustering (consensus and ‘one-method’) algo-
rithms that have been tested without any selection of
methods, on each artificial assemblage. The DM value of the
254 combinations was thus calculated for every species
assemblage. Among all the 254 possible combinations of
distances and clustering algorithms, the one with the lowest
DM value gave the most faithful picture of data distribution
in space and thus was chosen as the most appropriate to
calculate FD index. Then we retained the DM value of the
most reliable dendrogram (i.e. corresponding to the
combination with the lowest dissimilarity) of every assem-
blage of each dataset to calculate the mean DM of the sets.
The significance of all main effects, and all possible
interactions between factors (distances, clustering methods,
correlations between traits and species richness) on DM
were explored using a four factor ANOVA.

The effects of distances, clustering methods, correlations
between traits and species richness on DM were explored
using a four factor ANOVA.

All calculations, including analyses of variances, datasets
creation and tree constructions (consensus or not), were
implemented using the R statistical environment (R
Development Core Team 2006). Construction of consensus
trees and dissimilarity tests were performed with, respec-
tively, functions ‘cl_consensus’ and ‘cl_dissimilarity’ from
the Clue package (Hornik 2005, Cluster ensembles, R
package ver. 0.3�13). An R script is available from the
authors to compute the different trees and to choose the
most appropriate method (with the lowest dissimilarity) to
built a functional tree.

Results

The effects of species richness, trait correlations, clustering
methods and distances were estimated on the level of
dissimilarity between initial distance and cophenetic dis-
tance matrices (DM). The four factor ANOVA revealed that
DM varied significantly with the clustering method, the
level of correlation among functional traits and species
richness but the effect of distances was the less important
(Table 2). Because most interactions were significant, the
influence of single factors was, in general, dependent on the
others. In other words, DM was influenced by all the factors
and their interactions. For example, when the traits were
independent, the distance which provided the best tree
(lowest DM) was consistently Euclidean distance (with

Table 1. Clustering methods tested (according to Legendre and Legendre 1998).

Clustering method Acronym Signification

Single linkage SL Fusion of the closest objects
Complete linkage CL Fusion of the most distant objects
Unweighted pair group method using
arithmetic averages

UPGMA Fusion of clusters when the similarity reaches the
mean inter cluster similarity value

Weighted pair group method using arithmetic
averages

WPGMA Mean dissimilarity between two items is the sum of the
weighted dissimilarities

Unweighted pair group centroid method UPGMC Fusion of the clusters with closest centroids
Weighted pair group centroid method WPGMC Fusion of the clusters with closest centroids after adjustment

for group sizes
Ward’s method Ward Minimization of the within-group sum of squares
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UPGMA) whereas, when they were correlated, Gower
distance consistently provided the best result (still with
UPGMA) (Fig. 1, Table 3a). Furthermore, higher species
richness tended to decrease DM (Fig. 1). However the
number of clustering algorithms giving the lowest DM value
differed from one case to the other. For instance, the
assemblage with the lowest DM among the dataset 40 Indep

(i.e. 100 assemblages of 40 species characterized by five
independent traits) involved five clustering algorithms but
only two algorithms in the other datasets 40 Cor, 20 Cor
and 20 Indep (Table 3b). However, the complexity of
interactions between factors made identification of the
direct effects of each factor (distance measures, clustering
algorithms, species levels, and correlations between traits)
on DM, difficult. Consequently, no combination of distance
and clustering methods gave systematically the best repre-
sentation of species from the multidimensional functional
space. Each clustering algorithm and distance was, at least
once, used in the best representation of data. Nevertheless,
among all combinations, UPGMA/UPGMC consensus
trees seemed to be most often used (Table 3a).

In addition, the comparison among dendrograms built
with different combinations from the same sample (a 20
species assemblage characterized by five independent traits)
illustrated the differences in species clustering provided by
different combinations (Fig. 2). In our particular case, the
lowest dissimilarity was obtained using the combination of
Euclidean distance and consensus tree resulting from
UPGMA/UPGMC/single linkage cluster algorithms
(DM�0.27, Fig. 2a). The combination Euclidean distance
� UPGMA (Fig. 2b) obtained an intermediate dissimilarity
level (DM�0.52). The highest dissimilarity was given by
the consensus tree WPGMC/Ward presented in Fig. 2c. In
this case, the initial distance matrix (made with Gower’s
distance) had a dissimilarity value of 0.9 with the

Table 2. Effects of clustering methods, distances, levels of correla-
tions between traits and species richness on dissimilarity DM tested
by a four factor ANOVA. F values with associated levels of
significances (ns: non significant, *: pB0.05, **: pB0.01). (Cor:
correlation; Met: clustering method; Dist: distance; SR: species
richness; �: interaction).

Factors DF F

Met 6 379.06**
Cor 1 3803.32**
SR 1 651.71**
Dist 1 12.25**
Met�Cor 6 32.67**
Met�SR 6 6.76**
Met�Dist 6 5.02**
Cor�SR 1 9.68**
Cor�Dist 1 247.72**
SR�Dist 1 5.29*
Met�Cor�SR 6 2.65*
Met�Cor�Dist 6 2.11*
Met�SR�Dist 6 0.91ns
Cor�SR�Dist 1 0.11ns
Met�Cor�SR�Dist 6 0.31ns

Fig. 1. Impact of clustering algorithms on dissimilarity. DM values (y-axis) from 4 virtual datasets of 100 assemblages each. (WARD:
Ward’s method; SL: single linkage; CL: complete linkage; UPGMA: unweighted arithmetic average clustering; WPGMA: weighted
arithmetic average clustering; UPGMC: unweighted centroid clustering; WPGMC: weighted centroid clustering; NEW: the new method
proposed in this article). Assemblages characterized by 5 independent traits. Assemblages characterized by 4 correlated traits and
1 independent trait.
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cophenetic distance matrix of the tree. Some strong
inconsistencies appeared between these three dendrograms
(Fig. 2). For instance, the position of species 1 changed
drastically among dendrograms. Species 1 was joined
together with species 3 using Euclidian distance and
UPGMA cluster algorithm while this species was associated
to the couple of species 2�5 according to the consensus tree
combining UPGMA/UPGMC/single linkage methods.
However, the results obtained from the initial distance
matrix (here, Euclidean) showed that distance ED1�3�5
was higher than the distances ED2�1�4.51, and ED5�1�
3.61. Thus, species 1 was more distant in functional trait
space from species 3 than from species 2 and 5, indicating
that some methods may incorrectly classify species 1 and 3
together.

Discussion

Indices based on a hierarchical classification are highly
dependent on the capacity of the clustering method to
accurately represent the distribution of species in a func-
tional space (Podani and Schmera 2007). This critical point
deserves to be quantitatively studied. From artificially
generated data, we have tested whether any single of seven
clustering methods and two distances always performs
better than the others, or if it is necessary to choose a
‘‘consensus’’ dendrogram. Taken together (Fig. 1, Table 2,
3), our results show (1) that the characteristics of the species
assemblages inconsistently influence the performance of the
methods, (2) that there is no general rule for the choice of a
distance or a clustering method and (3) that the best
representation is often provided by a consensus tree.

Rao and Srinivas (2006) defined a threshold for validity
of a dendrogram: the dissimilarity between initial distance
and cophenetic distance matrices, DM, must be less than
0.36 (corresponding to the 0.8 correlation coefficient limit
stated by Rao and Srinivas). Some algorithms are well
known to cause a distortion of space (Legendre and

Legendre 1998). Single linkage tends to contract space by
compressing edges of the dendrograms whereas complete
linkage tends to dilate data space to produce compact classes
(Podani and Schmera 2006). Despite their drawbacks,
single linkage and complete linkage must not be ignored
because they are regularly included in the consensus trees
yielding the lowest DM (Table 3b). Dendrograms built
using the UPGMA method give the lowest DM values (Fig.
1), that is a better representation of data. Among the
algorithms selected in the study, UPGMA is a good
compromise between single linkage and complete linkage
because it preserves most of the initial distances in
dimensionally reduced space. In contrast, the Ward’s
method, though widely used, produces the least reliable
classifications (Fig. 1). Nevertheless, hierarchical classifica-
tions are one-dimensional pictures of data dispersed in an n-
dimension space. So, none of the clustering algorithms
(even UPGMA) perfectly corresponds to the distribution of
objects in a multidimensional space. As demonstrated here,
the quality of representation offered by clustering methods
is also modulated by other factors: level of correlations
between traits and species richness (Table 2). Therefore, it
is worth gathering information from different clustering
methods into consensus trees.

To evaluate the faithfulness of a hierarchical classifica-
tion, the method presented here relies on cophenetic
correlation through a dissimilarity measure (DM). Cophe-
netic correlation quantifies the agreement between the
initial distance matrix and the cophenetic distance matrix.
In other words, cophenetic correlation enables one to
choose the best combination of clustering method accord-
ing to the distance employed. However cophenetic correla-
tion does not take into account the transformation of the
trait matrix into a distance matrix. More studies are needed
to assess the impact of that transformation and of the use of
other distances (Manhattan, Bray�Curtis, etc.). Besides, the
faithfulness of a classification may decline with a decrease in
the number of functional traits and/or species richness
(Sokal et al. 1992).

Table 3. Dissimilarity DM tested on the best combination of distance � clustering algorithm(s) of each of the one hundred species
assemblages of the four datasets. (a) Mean, DMmean, and standard deviation, DMsd, of all datasets calculated with the dissimilarity value of the
best combination of each assemblage, proportion of Euclidean and Gower distances involved in the best combinations and of the clustering
algorithm(s) that gave the lowest dissimilarity in the greatest percentage of assemblages; (b) combination of distance � clustering method
giving the lowest DM of each species richness and trait correlation levels. (ED: Euclidean distance; GD: Gower’s distance; 40 Indep: 40
species with 5 independent traits; 20 Indep: 20 species with 5 independent traits; 40 Cor: 40 species with 1 independent�4 correlated traits;
20 Cor: 20 species with 1 independent�4 correlated traits).

(a)

Datasets DMmean DMsd Distances Clustering algorithms

40 Indep 0.533 0.059 ED: 94.1% GD: 5.9% UPGMA�UPGMC: 34%
20 Indep 0.478 0.07 ED: 90.9% GD: 9.1% UPGMA�WPGMC: 22%
40 Cor 0.411 0.05 ED: 11.4% GD: 88.6% UPGMA�UPGMC: 35%
20 Cor 0.361 0.066 ED: 20.8% GD: 79.2% UPGMA�UPGMC: 24%

(b)

Datasets DM Distances Clustering algorithms

40 Indep 0.386 ED UPGMA � UPGMC � CL � WPGMA � SL
20 Indep 0.295 ED UPGMA � WPGMC
40 Cor 0.275 GD UPGMA � SL
20 Cor 0.195 GD UPGMA � UPGMC
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The debate on the calculation of index FD originates
from the difficulty of choosing the right combination of
distance-clustering method (Podani and Schmera 2006).
Our results show that there is not a unique answer, each
case being different because of the complexity of interac-
tions between factors such as correlations of traits, species
richness, distances and clustering methods. For instance, the
choice of the distance is not only related to the type of data.
Even if Gower’s formula is the only way to cope with mixed
data, Euclidean distance must not be excluded when all data
are quantitative (Fig. 1). Overall, in our results, the best
solution is often given by a consensus tree combining
dendrograms produced using several different clustering
algorithms. Consensus trees increase the quality of repre-
sentation of the species on the dendrogram (Fig. 1). They
minimize the dissimilarity with the initial distances and
preserve the parts common to several trees. As a conse-
quence, FD values obtained will be more accurate. Never-
theless, if the less distorted representation is still very
dissimilar from the original distance matrix, FD should not

be measured to avoid erroneous interpretations about the
functional structure of a community.

Alternatively, we advise against making any a priori
choice of a distance or a clustering algorithm but, instead,
we propose testing all the possible combinations (including
consensus trees) and selecting the one with the lowest
dissimilarity value to estimate FD. The choice of the
method is therefore objective. Searching for the best
combination of distance and clustering algorithm(s) is a
good answer to the debate around FD’s statistical validity.
In addition, our method potentially has a broader ‘field’ of
application than the calculation of index FD. Indeed, the
simple classification of species into functional groups is still
largely subjective since many alternatives exist for the
clustering algorithm. This lack of agreement may weaken
the conclusions about the role of functional diversity on
ecosystem functioning (Wright et al. 2006). The investiga-
tion of the relationship between the shape of functional
dendrograms and the patterns of species relative abundances
would also benefit from such an objective tool (Sugihara

Fig. 2. Hierarchical classifications of an artificial species assemblage composed of 20 species characterized by 5 independent functional
traits. (a) with the lowest DM (DM�0.27); (b) with an intermediate DM (DM�0.52); (c) with the highest DM (DM�0.9).
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et al. 2003). Finally, the calculation of indices that require
the construction of dendrograms to obtain ultrametric
distances among species pairs, such as the originality of a
species (Pavoine et al. 2005) or the ‘turn-over’ of commu-
nities along environmental gradients (Hardy and Senterre
2007), could also benefit from this method.
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