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Summary

1. Indices quantifying the functional aspect of biodiversity are essential in understanding

relationships between biodiversity, ecosystem functioning and environmental constraints. Many

indices of functional diversity have been published but we lack consensus about what indices

quantify, how redundant they are and which ones are recommended.

2. This study aims to build a typology of functional diversity indices from artificial data sets

encompassing various community structures (different assembly rules, various species richness

levels) and to identify a set of independent indices able to discriminate community assembly

rules.

3. Our results confirm that indices can be divided into three main categories, each of these corre-

sponding to one aspect of functional diversity: functional richness, functional evenness and func-

tional divergence. Most published indices are highly correlated and quantify functional richness

while quadratic entropy (Q) represents a mix between functional richness and functional diver-

gence. Conversely, two indices (FEve and FDiv respectively quantifying functional evenness and

functional divergence) are rather independent to all the others. The power analysis revealed that

some indices efficiently detect assembly rules while others performed poorly.

4. To accurately assess functional diversity and establish its relationships with ecosystem func-

tioning and environmental constraints, we recommend investigating each functional component

separately with the appropriate index. Guidelines are provided to help choosing appropriate

indices given the issue being investigated.

5. This study demonstrates that functional diversity indices have the potential to reveal the pro-

cesses that structure biological communities. Combined with complementary methods (phylo-

genetic and taxonomic diversity), the multifaceted framework of functional diversity will help

improve our understanding of how biodiversity interacts with ecosystem processes and environ-

mental constraints.

Key-words: artificial data, functional divergence, functional diversity measures, functional

evenness, functional richness, limiting similarity, motion model, neutrality, niche filtering

Introduction

Biological diversity, or biodiversity, defined as ‘the variety

of life on Earth at all its levels, from genes to ecosystems,

and the ecological and evolutionary processes that sustain

it’ (Gaston 1996), embraces the diversity of genes, pheno-

types, populations, species, communities and ecosystems.

As a result, quantifying such a broad concept has proved to

be problematic. However, as Purvis & Hector (2000) high-

lighted, ‘We cannot even begin to look at how biodiversity

is distributed, or how fast it is disappearing, unless we can

put units on it’. Classical biodiversity measurements (spe-

cies richness or the myriad of diversity indices such as Shan-

non) have relied on three main assumptions: (i) all species

are equal (only relative abundances establish the relative

importance of species), (ii) all individuals are equal (what-

ever their size) and (iii) species abundances have been

correctly assessed with appropriate tools and in similar

units (Magurran 2005). Yet, species not only offer a wide

range of colours or life forms to the Human eye, they are*Correspondence author. E-mail: maud.mouchet@univ-montp2.fr
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also likely to support many goods and services through eco-

system processes (e.g. Dı́az et al. 2007). Hence, the first

assumption of biodiversity measurement is not valid: spe-

cies are not equal in their effects on ecosystem functioning

since their functional traits matter to ecosystem processes.

As early as 1994, Solow & Polasky (1994) suggested that

measuring diversity was equal to characterizing the distribu-

tion of points in space. Accordingly, measuring functional

diversity is quantifying the distribution of functional units in

a multidimensional space (Villéger, Mason &Mouillot 2008).

By analogy with Hutchinson’s niche, Rosenfeld (2002)

defined functional diversity (i.e. the functional component of

biodiversity) as the distribution of species in a functional

space whose axes represent functional features. A new genera-

tion of measurements has already been proposed to quantify

this multidimensional distribution (see Petchey & Gaston

2006 for a review). However, despite the importance of the

subject, there is no consensus on how to quantify the func-

tional diversity of a community and relationships between the

various indices have not been established. One step further,

we still lack a study quantifying the ability of various func-

tional diversity indices to discriminate the processes shaping

functional community structures. Mason et al. (2005), in sug-

gesting that functional diversity could be divided into three

primary components – functional richness, functional diver-

gence and functional evenness –, proposed a definition of

functional diversity to guide the conception of new indices

and the categorization of existing ones. The three facets are

complementary and, taken together, describe the distribution

of species and their abundances within the functional space.

Functional richness represents the amount of functional

space occupied by a species assemblage. Functional evenness

corresponds to how regularly species abundances are distrib-

uted in the functional space. Finally, functional divergence

defines how far high species abundances are from the centre

of the functional space. This decomposition of functional

diversity reflects complementary characteristics of the distri-

bution of taxa (or individuals) in functional space. Linking

indices to a particular functional diversity component could

greatly aid ecologists in deciding on a minimum set of indices

from the ever increasing range of options. As each component

describes an independent aspect of functional diversity, a

complete quantification of functional diversity requires at

least one index measuring each functional diversity compo-

nent. Previous works have already categorized functional

diversity indices (Petchey, Hector & Gaston 2004; Ricotta

2005; Petchey & Gaston 2006). Among concluding remarks,

Petchey & Gaston (2006) emphasized the necessity to deter-

mine which functional diversity measure performs best. To

achieve this, the explanatory power and their statistical valid-

ity have to be well defined. For example, an increase in species

richness and ⁄or co-linearity between traits may modify the

behaviour of each index (Mouchet et al. 2008). Correctly

identifying bias in index calculation is crucial to avoid spuri-

ous conclusions. Furthermore, no study clearly establishes

which measures estimate which facet of functional diversity

and several meanings have been attributed to the same index.

For instance, the Rao’s quadratic entropy (Q) has been

labelled a measure of functional diversity (Scherer-Lorenzen

et al. 2007;Weigelt et al. 2008) or functional divergence (Dı́az

et al. 2007). It thus becomes critical to evaluate the possible

redundancy or complementarity between these various indi-

ces. In other words, do functional diversity indices all quan-

tify the same facet of functional diversity?

Besides quantifying functional diversity, functional

diversity measures could close the gap between ecosystem

functioning and community ecology. Patterns of functional

diversity may reveal species coexistence processes and assem-

bly rules driven by functional traits (Mason et al. 2007;

Mouillot, Mason & Wilson 2007). Niche filtering assumes

that coexisting species are more similar to one another than

would be expected by chance because environmental condi-

tions act as a filter allowing only a narrow spectrum of traits

to persist (Zobel 1997). On the other hand, the competitive

exclusion (Hardin 1960) and limiting similarity principles

(MacArthur & Levins 1967) assume the stable coexistence of

functionally dissimilar species. In addition, neutral theory

(Hubbell 2001) posits that species coexist and persist in a sys-

tem independently of their traits since individuals and species

are equivalent. Recent findings suggest that these three mech-

anisms may co-occur simultaneously and blur the patterns

(Helmus et al. 2007) ormay occur sequentially along environ-

mental gradients (Mason et al. 2007). Further, the relative

influence of assembly rules depends on the scale of observa-

tion (Zobel 1997; Silvertown et al. 2006; Kraft et al. 2007).

Environmental filtering is assumed to be stronger at the regio-

nal scale (Dı́az, Cabido&Casanoves 1999; Cornwell, Schwilk

& Ackerly 2006) whilst species interactions (i.e. competition

or limiting similarity) drives local assembly patterns (Cavend-

er-Bares et al. 2004; Slingsby&Verboom 2006). Thus the cru-

cial question is no longer which mechanism is valid in ecology

but which mechanism has the strongest influence on commu-

nities. This latter point needs appropriate tools able to

differentiate communities under different assembly rules and

the potential of various functional diversity indices is still

unknown.

The principal objectives are therefore to set up the typology

of existing functional diversity indices and to determine their

ability to discriminate assembly processes underlying the

functional structure of communities. Ultimately, we aim to

provide a guide to use the appropriate functional indices

given the issue being investigated.

Materials and methods

F U N C T I O N A L D I V E R S I T Y M EA S U R E S

One of the first methods proposed to quantify functional diversity

relies on the classification of species into various functional groups

according to an a priori classification (e.g. Hooper & Vitousek 1997;

Tilman et al. 1997). The number of functional groups is assumed to

evaluate species complementarity in resource use (Petchey 2004).

However, the choice of functional groups is not based on objective

(mathematical or statistical) methods. Indeed, the threshold, from
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which functional interspecific dissimilarities are considered to be sig-

nificant, is an arbitrary decision of the experimenter (Wright et al.

2006). This underlines the necessity to work with continuous and

objective measurements of functional diversity (Petchey, Hector &

Gaston 2004).

The first published index measuring functional diversity in a con-

tinuous way, Functional Diversity Attribute (FAD, Walker, Kinzig

& Langridge 1999), quantified the sum of all functional pairwise dis-

tances between species belonging to the same community. This index

evaluates the average functional contribution of each species to the

total diversity of a community (Ricotta 2005). In a step forward Pet-

chey & Gaston (2002) proposed the FD index which measures func-

tional diversity from the total branch length linking species belonging

to the same community on the functional dendrogram built on the

regional pool of species. This latter index has the advantage over the

former to be independent of species splitting (i.e. the splitting of one

species into two species with similar traits has no effect on the index

value). Then, Botta-Dukát (2005) advised the use of Rao’s quadratic

entropy (following Rao 1982) as a functional diversity measure mea-

suring the mean functional distance between two randomly chosen

individuals. Following the functional diversity decomposition of

Mason et al. (2005), several measurements have been presented to

assess each facet: FDvar (Mason et al. 2003), a measurement of the

functional divergence (previously proposed as a functional diversity

index) and an index of functional richness FR (Mason et al. 2005). In

parallel, Mouillot et al. (2005) quantified functional evenness with

FRO. FDvar, FR and FRO are all univariate indices (e.g. only one

functional trait taken into account). More recently, Villéger, Mason

& Mouillot (2008) defined multivariate measurements for functional

diversity components: FRic (functional richness), FEve (functional

evenness) and FDiv (functional divergence). Concurrently, twomodi-

fied versions of FD and FAD have been proposed, GFD (Mouchet

et al. 2008) and MFAD (Schmera, Erös & Podani 2009), in order to

remove the bias induced by respectively species splitting (Petchey,

Hector & Gaston 2004) and the choice of the distance and clustering

algorithm (Podani & Schmera 2006). To fit Rosenfeld’s definition of

functional diversity, we chose to only focus onmultivariate measures.

In this study, FD, GFD and FRic will be expressed as a proportion of

the functional volume occupied by the regional species pool to facili-

tate their comparison. Descriptions, calculations and references of the

eight selected indices FRic, FAD, MFAD, FD, GFD, Q, FDiv and

FEve are presented in Table 1.

Table 1. Functional diversity measures

Index Description Formula Based on

Abundance

included

Functional Attribute

Diversity (Walker,

Kinzig & Langridge

1999)

FAD Sum of pairwise distances

between species
FAD ¼

XS
i¼1

XS
j¼1

dij
Distance

matrix

No

Modified Functional

Attribute Diversity

(Schmera, Erös &

Podani 2009)

MFAD Sum of pairwise distances

between functional units
MFAD ¼

XN
i¼1

XN
j¼1

dij

N

Distance

matrix

No

Functional Diversity

(Petchey & Gaston

2002)

FD Sum of branch length of a

functional classification

FD = i¢ Æ h2 Hierarchical

classification

No

Generalized

Functional

Diversity (Mouchet

et al. 2008)

GFD Sum of branch length of a

functional classification

GFD = i¢ Æ h2 Hierarchical

classification

No

Functional Richness

(Cornwell, Schwilk

& Ackerly 2006;

Villéger, Mason &

Mouillot 2008)

FRic Convex Hull Volume Quickhull algorithm Trait values No

Rao’s quadratic

entropy (according

to Rao 1982)

Q Sum of pairwise distances

between species weighted

by relative abundance

Q ¼
XS�1
i�1

XS�1
j¼iþ1

dijpipj
Distance

matrix

Yes

Functional

Divergence

(Villéger, Mason &

Mouillot 2008)

FDiv Species deviance from the

mean distance to the

centre of gravity

weighted by relative

abundance

FDiv ¼ Ddþ dG

Djdj þ dG

Trait values Yes

Functional Evenness

(Villéger, Mason &

Mouillot 2008)

FEve Sum of MST branch

length weighted by

relative abundance FEve ¼

XS�1
i¼1

min PEWi;
1

S� 1

� �
� 1

S� 1

1� 1

S� 1

Trait values Yes

dij: dissimilarity between species (or functional unit) i and j. S: the total species richness. N: the total number of functional units. pi: relative

abundance of species i. x: trait value. dG: mean distance to the centre of gravity. Dd: sum of abundance-weighted deviances. D|d|: absolute
abundance-weighted deviances from the centre of gravity. PEW: partial weighted evenness. i’: branch presence ⁄ absence row vector. h2:

branch length vector.

GFD, FD and FRic were expressed as the proportion of occupied space (i.e. the local community) compared to the maximal volume (i.e. the

regional pool).
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T H E O R E T I C A L D A T A S E T S

To investigate the behaviour of indices in a realistic framework, we

created artificial data exhibiting patterns displayed by real communi-

ties. Artificial data have the benefit of allowing control over commu-

nity parameters. In this dataset, we manipulated species richness and

community structure through three community assembly schemes:

habitat (or niche) filtering (van der Valk 1981; Keddy 1992), limiting

similarity (MacArthur & Levins 1967) and neutral assembly (Hubbell

2001). To simulate the functional structure of species in the regional

pool, we used a modelling approach proposed by Kraft et al. (2007).

This conceptual framework is based on evolutionary models incorpo-

rating the Brownian motion model of trait evolution, which is exten-

sively used in literature and includes assembly processes in the

generation of more realistic artificial data. Initially, the Brownian

motion model was developed to reproduce the random movement of

microscopic particles, immersed in a liquid or gas affected by thermal

noise, whose total displacement is drawn from a normal distribution

centred around 0 (Felsenstein 1985). Brownian models assume a con-

stant rate of evolution of trait while species evolve independently from

each other. Consequently some species may be characterized by simi-

lar trait attributes. Thismodel of trait evolution predicts that phyloge-

netically closely related species should be functionally more similar to

each other.

Following Kraft et al.’s (2007) procedure, a primary set of a thou-

sand species x traits matrices (each representing an artificial regional

pool of 150 species characterized by five traits) was simulated under

the assumption of a Brownianmotionmodel without any assumption

concerning assembly rule. From each of the one thousand regional

pools, ten local communities (having from 10 to 100 species with an

interval of 10) were then produced using each assembly rule algorithm

following the framework of Kraft et al. (2007). The niche filtering

algorithm was based on the distance between species functional attri-

butes and the optimum defined for each functional trait (at a given

species richness, the furthest species from the optimum were elimi-

nated). Limiting similarity assumes that there is a limit to how similar

two co-existing species can be in their niches. Consequently, one of

the nearest neighbours in each pair of species was removed until the

desired species richness was achieved. The neutral assembly algorithm

randomly subsampled, without replacement, communities from the

regional pool. Algorithms used to simulate each process are extreme

relative to what would be observed in nature where each process can

act simultaneously generating some blurring effects.

One step further than Kraft et al.’s design, we allocated species

abundances according to each assembly rule to complete simulation

of the three assembly processes. To fit realistic sampling distribu-

tions, species abundances were generated using a log-normal distri-

bution (a common pattern in nature, Preston 1948) then

standardised to relative abundances. In the niche filtering context,

the nearer a species was to the optimum trait values, the greater its

abundance. For limiting similarity, abundance decreased with

increasing similarity (decreasing functional distance) between all co-

occurring species. In the random scenario, abundances were ran-

domly distributed.

T Y P O L O G Y O F T H E F U N C T I O N A L D I VE R S I T Y I N D I C E S

Each index of functional diversity was calculated for the one thou-

sand artificial communities corresponding to each of the three assem-

bly processes and each of the ten species richness levels, aggregating

240 000 values (N.B.: here, the large number of values renders P-val-

ues uninformative since statistical tests will have a very strong power).

Relationships between each pair of functional diversitymeasures were

investigated using the Spearman coefficient of correlation. Addition-

ally, a typology of all indices was carried out on the matrix crossing

functional diversity measures (variables) and communities (objects)

using a principal component analysis (PCA). To support the classifi-

cation of indices into groups using the PCA axes, we applied a K-

means partition (Legendre & Legendre 1998) based on index coordi-

nates on the main PCA axes (i.e. those with an eigenvalue higher or

equal to 1). For each number of groups, the Calinski-Harabasz crite-

rion was computed. This criterion uses the Variance Ratio Criterion,

which is analogous to F-Statistics, to minimize the within-group sum

of squares and maximize the between-group sum of squares. The par-

tition yielding the highest Calinski-Harabasz value (corresponding to

the set of most compact groups) was retained for the final typology

(Legendre &Legendre 1998).

P E R F O R M A N C E O F T H E I N D I C E S

We examined the influence of two major parameters on multivariate

functional diversity indices: species richness and community assembly

rules. The relationship of each measure of functional diversity with

those parameters was explored using a two factors ANOVA on themean

value of each index for every richness level and assembly rule. Finally,

a performance test, based on a statistical power analysis (type II

error), was conducted for each index in order to evaluate its ability to

detect non-random patterns shaping functional community struc-

tures. To this aim, for a given level of species richness, the distribution

of index values calculated under the limiting similarity hypothesis on

one side, the niche filtering one on the other side, was compared to the

distribution of index values calculated in the random scenario (here,

our null hypothesis). More precisely, we calculated the statistical

power as the proportion of index values obtained under an assembly

rule (limiting similarity or niche filtering) that produced significant

results in the predicted direction (alternative hypothesis), i.e. the abil-

ity to detect an ongoing effect. We used type I error at P = 0Æ05 for

all tests.

Results

P A R T I T I ON I N G F U N C T I O N A L D I VE R S I T Y I N D I C E S

Spearman correlations between functional diversity measures

(Table 2) revealed a high correlation between FRic, FAD,

MFAD, GFD and FD (coefficient values ranged from 0Æ769
to 0Æ999). As expected, GFD and FD on one hand, MFAD

and FADon the other hand, are highly associated (Spearman

coefficients of 0Æ999 and 0Æ986 respectively). FEve was weakly
correlated to other measures (see Table 2 for details). Finally,

FDiv was essentially related to Q (rQ-FDiv = 0Æ833) which is

also correlated to FRic (rQ-FRic = 0Æ695).
The first three axes of the PCA carried out on the eight indi-

ces, accounted for 95Æ28% of total inertia (Fig. 1). The K-

means classification confirmed the classification of indices

into four groups (optimal Calinski-Harabasz criterion =

114Æ55). The first group gathered MFAD, FAD, FD and

GFD. The second group was composed ofQ and FDiv while

FRic and FEve represented the third and the fourth group

respectively. The K-means classification is well illustrated by

PCA plot based on the first and third axes (lower part of
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Fig. 1): FRic is gathered with FD, GFD, FAD and MFAD

while FEve is independent of FDiv andQ.

P R O P E R T I E S OF F U N C T I O N A L D I VE R S I T Y I N D I C E S

The two factors ANOVA segregated the functional diversity

indices into two groups according to the relative magnitude

of F-values: indices mainly influenced by species richness (i.e.

FAD, MFAD, FD and GFD) and indices mostly affected by

assembly rules (i.e. FRic, Q, FDiv and FEve) (Table 3).

Furthermore, FAD, MFAD, FD, GFD and FRic values

monotonically increased with species richness whatever the

underlying assembly rule (Fig. 2). Conversely, FDiv, Q and

FEve indices exhibited a weak relationship with species

richness.

P E R F O R M A N C E O F F U N C T I O N A L D I V E R S I T Y I N D I C E S

Overall the power analysis revealed that GFD, FD, FRic and

FDiv had a high power to detect both assembly rules (limiting

similarity and niche filtering), particularly for species richness

levels higher than 30 species. For communities with a lower

richness (10 species), FRic is the best performing index what-

ever the underlying assembly rule.

FAD, MFAD, Q and FEve were more able to detect niche

filtering patterns than limiting similarity patterns for which

Table 2. Spearman correlation coefficients between functional diversity measures

FAD MFAD FD GFD FRic Q FDiv FEve

FAD 1 *** *** *** *** *** *** NS

MFAD 0Æ986 1 *** *** *** *** *** ***

FD 0Æ975 0Æ965 1 *** *** *** *** ***

GFD 0Æ975 0Æ965 0Æ999 1 *** *** *** ***

FRic 0Æ769 0Æ819 0Æ864 0Æ863 1 *** *** ***

Q 0Æ299 0Æ426 0Æ367 0Æ367 0Æ695 1 *** ***

FDiv 0Æ099 0Æ197 0Æ237 0Æ236 0Æ621 0Æ833 1 ***

FEve )0Æ001 0Æ053 0Æ067 0Æ067 0Æ285 0Æ373 0Æ405 1

The correlation coefficients are evaluated on 30 000 artificial species communities, characterized by three assembly patterns, scattered into

ten species richness levels.

NS, non significant; *P < 0Æ05 ; **P < 0Æ01; ***P < 0Æ001.

Fig. 1. Principal Component Analysis carried out on the on artificial

species communities, characterized by three assembly patterns, scat-

tered into ten species richness levels (10, 20, 30, 40, 50, 60, 70, 80, 90,

100 sp). The eight functional diversity indices are represented in the

three axes volume. Several variable vectors are superimposed because

the corresponding indices are very close on PCA plans (i.e. FD, GFD

and MFAD on plan 1–2 and FD and GFD on plan 1–3). K-means

groups (Calinski-Harabasz criterion of 114Æ55) are disentangled using

the line types.

Table 3. Effects (F-statistic) of assembly rules and species richness on

functional index values tested by a two factors ANOVA

Factors

Assembly

rules

Species

richness

Assembly rules:

Species richness

d.f. 2 9 18

FAD 394Æ33 2456Æ13 610Æ37
MFAD 378Æ83 2091Æ91 483Æ8
FD 153465Æ8 415917Æ5 1077Æ3
GFD 151014Æ1 410205Æ5 1053Æ0
FRic 269668Æ9 55623Æ9 4015Æ5
Q 52560Æ03 405Æ37 87Æ23
FDiv 113939Æ3 157Æ27 209Æ49
FEve 6346Æ7 2290Æ06 22Æ81

The main factor is in bold.

‘‘:’’ represents the interaction between factors.

All P-values associated are very highly significant.
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power values are lower than 40% whatever the richness val-

ues (Fig. 3). However, FAD and MFAD performed poorly

for higher richness values (>50 species) while FEve per-

formed poorly for lower richness values (<40 species).

Discussion

F A C E T S O F F U N C T I O N A L D I V E R S I T Y

Functional diversity components (richness, divergence, even-

ness) were already presented in a univariate framework

(Mason et al. 2005; Mouillot et al. 2005). But our compari-

son of existing indices based on simulated communities

proves that functional diversity measures actually measure

different facets of functional diversity while some indices are

highly redundant. According to our results, measures of func-

tional diversity can be scattered into four groups all related to

the three orthogonal functional components previously

described.

The first component of functional diversity, functional

richness, is characterized by indices from two K-means

groups: FAD, MFAD, FD, GFD and FRic. As functional

Fig. 2. Functional diversity indices as a function of species richness for three community assembly rules: limiting similarity (open circles), filtering

(gray circles) and random assembly (black circles). Each circle shows themean value and the corresponding standard deviation of each functional

diversitymeasures (y-axis) for the level of richness indicated on the x-axis. GFD, FDand FRic are standardized to the interval [0, 1].
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richness corresponds to the volume of functional space occu-

pied by species (abundance is not involved), only FRic mea-

sures this volume directly while distance-based (FAD and

MFAD) and dendrogram-based (FD and GFD) indices pro-

vide an indirect estimate of this volume. On one hand, FAD,

FD and their sister indices measure the sum of distances (in

the space or along the tree) involving all the species. On the

other hand, FRic only takes into account the species with the

most extreme trait values forming the vertices of the convex

hull. FRic is distinguished from the others on K-means parti-

tion because it ignores the potential functional variation

within the convex hull while the other functional richness

measures do not.

The second of these components (functional divergence) is

represented by FDiv and, to a less extent, Q. FDiv measures

how abundances tend to be on the outer margins of the func-

tional space while controlling for functional richness (Villé-

ger, Mason & Mouillot 2008). High levels of functional

divergence will be associated to a high degree of niche differ-

entiation among species within communities: the most abun-

dant species are very dissimilar and weakly compete. Q is the

only functional diversity measure that is not clearly related to

one of the functional diversity components. In fact, Q is not

merely a measure of functional divergence even if it is gath-

ered with FDiv on PCA. The correlation between FDiv and

Q is explained by Champely & Chessel (2002) who empha-

sized that, in an Euclidean space, Rao’s quadratic entropy is

the ‘weighted average of the square distances between the

underlying Euclidean representation of D [a distance matrix]

and the corresponding centre of gravity’. Weigelt et al. (2008)

characterized Rao’s quadratic entropy Q as ‘a continuous

measure of functional diversity including information about

the evenness of the distribution of functional traits within a

community’. Besides, Scherer-Lorenzen et al. (2007) found a

strong correlation between FD and Q (Pearson correlation

coefficient of 0Æ73). Here we demonstrate that Q is not fully

associated to either of the two components described previ-

ously. Indeed, both PCA and Spearman correlation coeffi-

cients prove that Q embraces two components: functional

richness and divergence.Q depends both on the range of func-

tional space occupied and on the similarity between species

with the highest abundances. Consequently, for a given func-

tional richness, a community with a highQwill tend to have a

high FDiv (the reciprocal is not true). Similarly, for a given

distribution of abundances among species, a community with

a higher functional richness (FRic) will have a higherQ.

The last of these components, functional evenness, is repre-

sented only by FEve. FEve measures the regularity of the

distribution of abundance in functional space. FEve will be

maximized by an even distribution of both species and abun-

dances in the functional space. FEve values will be lower

when some parts of the functional space are empty while

others are densely populated.

No one functional diversity measure encapsulates the

three facets simultaneously. Therefore, investigation of the

relationships between environment, functional diversity and

ecosystem functioning must consider the three independent

components of functional diversity (see Villéger, Mason &

Mouillot 2008 for a complete framework).

H O W D O F U N C T I O N A L D I VE R S I T Y M E A S U R E S

R E S PO N D T O S P E C I E S R I C H N ES S A N D AS S E M B LY

R U L E S ?

Limiting similarity favours functional dissimilarity (thus

complementarity) among species within a community

(Mouillot, Mason &Wilson 2007). Niche filtering rather pos-

tulates the exclusion of species with traits poorly adapted to

the ecosystem, yielding communities with similar species

(redundancy) (Cornwell, Schwilk & Ackerly 2006). Both pro-

cesses impact the functional diversity components through

the distribution of species (and their abundances) in the func-

tional space defined by the corresponding functional traits.

Accordingly, ‘limiting similarity’ yielded the highest func-

tional diversity values and ‘niche filtering’, the lowest, while

communities constructed with neutral assembly (‘random’)

Fig. 3. Power of functional diversity indices to detect assembly patterns occurring in communities. The power values are expressed as Type II

error. (The functional measures are represented by the following symbols: GFD,s FD, FAD,)MFAD, FRic, Q, FDiv, FEve).
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had intermediate values (Fig. 2). Besides the impact of assem-

bly rules, functional diversity values may also be influenced

by species richness. For instance, FD (or GFD) values

increased with species richness while FEve showed a more

even distribution of values along the species richness axis

(Fig. 2). Therefore, assembly rules and species richness

impacts on functional measures had to be established to accu-

rately interpret index values variation.

FAD,MFAD, FD and GFD are principally driven by spe-

cies richness (Table 3). They generally increase linearly with

increasing species richness (Fig. 2). In fact, the probability of

occupying a broader functional space increases with the num-

ber of species by sampling effect (i.e. with the increasing prob-

ability to include species with a combination of extreme trait

values). In the case of FAD, the addition of a species is always

accompanied by the addition of new pairwise distances, what-

ever the degree of functional redundancy with the species

already present in the community. This dependency to ‘spe-

cies split’ is the main concern about the use of FAD (Petchey

& Gaston 2006). This drawback is partially solved by

MFAD. MFAD is calculated on functional units: two func-

tionally redundant species are considered as one (Ricotta

2005; Schmera, Erös & Podani 2009). Unfortunately, when

continuous and quantitative trait data are considered, no spe-

cies is entirely redundant with another, so the functional unit

is no longer relevant and species splitting remains problem-

atic. In both cases MFAD and FAD increase exponentially

with species richness, indicating that these indices are highly

sensitive to species richness and do not correctly translate the

degree of redundancy among species or traits. Conversely,

GFD and FD are not sensitive to species splitting. However,

they also are strongly influenced by species richness. In fact,

adding a species to a regional pool adds branch lengths to the

regional pool tree. Thus, the total branch length increases

(unless it is perfectly redundant with a species already present

in the regional pool) and functional richness is related to

species richness. Functional richness measures that are less

closely linked to species richness should be preferred. Alterna-

tively, information independent from species richness is

obtained when using null models (Petchey et al. 2007) or

when using residuals of the linear regression between FD and

species richness (Mouillot, Dumay & Tomasini 2007) to

generate expected values of functional richness for different

levels of species richness.

FRic, FEve, FDiv and Q are much more sensitive to com-

munity assembly rules than species richness (Table 3). Unlike

other functional richness measures, FRic does not take into

account pairwise distances or branch lengths between species

but the vertices of the convex hull. Even if FRic increases

monotonically with species richness, it is more influenced by

assembly rules (Fig. 2). Our results suggest that FRic more

accurately represents the change in functional space dimen-

sionality caused by community structure (for instance,

changes in either the number of axes or the association

between them). Contrarily, FEve, FDiv andQ are less depen-

dent on the dimensionality of functional space and then more

influenced by assembly rules. As Q quantifies both the distri-

bution of functional units in functional space and the volume

occupied in the functional space, it is logical that it is more

sensitive to species richness than FDiv. Functional divergence

and evenness measures, respectively FDiv and FEve, are only

weakly sensitive to species richness according to their con-

struction (Villéger, Mason & Mouillot 2008). Functional

evenness and divergence, through FEve and FDiv, quantify

the distribution of functional units in functional space what-

ever the number of dimensions of the functional niche.

However, the sensitivity of an measure to assembly rules

rather than species richness is not consistent with its ability to

accurately discriminate assembly rules underlying community

structure. The power analysis deserves to be discussed for two

separate cases: indices including abundances or not. Indeed,

biomass distribution can emphasize or understate functional

relationships between species or units but is also affected by

assembly rules. For presence ⁄ absence indices (GFD, FD and

FRic), we obtained an overall high ability to successfully dis-

criminate assembly rules with power values between 64 and

100%whatever species richness values. Yet FRic consistently

reaches the highest power values especially for richness levels

lower than 30 species which are commonly encountered in

natural communities. For indices considering abundances

(FAD, MFAD, Q, FDiv and FEve), the discrimination

power is more variable. Overall, FDiv performs best whileQ,

FAD, MFAD and FEve poorly discriminate limiting simi-

larly from a neutral process whatever the species richness.

FEve is quite sensitive to niche filtering but hardly distin-

guishes limiting similarity from random assembly. Even if

species were regularly distributed in the functional space, the

log-normal distribution of abundances (i.e. few common

species with a skewed tail of rare species) led to an uneven

repartition of abundances. The highest level of evenness,

FEve, would be expected when both species and their

abundance are regularly distributed. It could be the case in

competition (or limiting similarity) context where abundances

are more evenly distributed than following a log-normal

distribution curve. FEve could also discriminate between

assembly algorithms when niche space is constant across all

three assembly patterns (Mason et al. 2008).

W H I C H F U N C T I ON AL D I V E R S I T Y M E A S U R E T O U S E ?

First of all, the choice of indices depends on the questions

being raised and the study context. Here we propose a guide-

line, following our results, concerning two issues: the influ-

ence of biodiversity on ecosystem functioning which is mainly

investigated with controlled communities in experiments and

the elucidation of processes governing biodiversity patterns

at local, regional and continental scales. For the former issue,

the crucial question is no longer whether species richness

influences ecosystem processes such as productivity or resil-

ience but which facet of biodiversity has the strongest influ-

ence on ecosystem processes and in which environmental

conditions (Cadotte et al. 2009). For instance, Villéger et al.

(2010) demonstrated how habitat degradation differentially

impacts each of the three components of functional diversity

� 2010 The Authors. Journal compilation � 2010 British Ecological Society, Functional Ecology, 24, 867–876

874 M. A. Mouchet et al.



with a loss of functional divergence while species richness

increases. To test the effect of a set of biodiversity facets on

ecosystem functioning ecologists usually rely on regression

methods (e.g. Cadotte et al. 2009). However multicollinearity

among explanatory variables is known to generate spurious

results with interpretable coefficients since effects cannot be

unambiguously segregated (Mac Nally 2002). Thus there is a

need to consider independent facets of functional diversity to

correctly assess effects of the diversity of traits on ecosystem

processes. To this aim, we suggest to use a combination of

three indices: one for each facet. FRic, FDiv and FEve seem

to constitute a relevant combination since (i) these indices

were built to be complementary (Villéger, Mason &Mouillot

2008), (ii) Q is not independent from functional richness and

(iii) GFD or FD need a cluster analysis which has somemeth-

odological problems and which losses information by reduc-

ing the dimensionality of the functional space (Mouchet et al.

2008). Nonetheless, in the case where the number of species in

experiments is too small compared to the number of traits

(richness higher than 2T with T being the number of traits),

FRic, FEve and FDiv are no longer relevant. We suggest

either to compute an ordination method (e.g. PCA) to reduce

the number of traits or to use a combination composed of

GFD and Q which are weakly correlated (0Æ367) but which
miss the functional evenness component.

Concerning the second issue, the ability of functional diver-

sity indices to reveal assembly rules underlying community

structure, we differentiate indices taking into account abun-

dances and the others relying only on presence ⁄ absence data.
For the latter (GFD, FDand FRic), the power analysis shows

that the three indices are able to efficiently differentiate

assembly rules whatever species richness (Fig. 3). However

we suggest using FRic for low richness values (10 species)

instead of dendrogram-based indices while the choice of FD

andGFDwould be justifiedwhen the number of species is less

than the number of traits (Villéger, Mason &Mouillot 2008).

GFD has the advantage over FD (i) to propose the ‘best’ den-

drogram to represent the species in a reduced functional space

(the one with less distortion) and (ii) to cope with categorical

and ⁄or quantitative traits with missing data. Although calcu-

lating FDiv or FEve on presence–absence data is possible, the

abundance contribution to functional diversity will be miss-

ing, so abundance data are always preferable for these indices.

When abundance data are available our results unambigu-

ously suggest using FDiv which is the only index taking into

account species abundances with a power value higher than

47% whatever the assembly rule or the richness value. Other

indices poorly perform to either discriminate the limiting sim-

ilarity process from a neutral process or when species richness

is high (>60).

As FAD and MFAD are sensitive to the splitting and do

not quantify any original functional diversity facet, we do not

suggest their use for any purpose.

Last of all, as Q summarizes both functional richness and

divergence, values should be interpreted with this in mind.

Consequently, interpretation of relationships between Q

and ecosystem or assembly processes will be complicated.

Yet, indices combining functional diversity components

(like Q) can be useful and must not be systematically

avoided. Indeed, Q is the only concave abundance-weighted

measure allowing a decomposition of the quadratic entropy

into alpha-, beta- and gamma-diversities (Villéger & Mouil-

lot 2008).

Guidelines provided in this study rely on well defined artifi-

cial datasets. In the field, multiple factors may influence the

functional structure of communities. Discriminating assem-

bly rules of real communities from different environments

and with varying species richness could be less straightfor-

ward. However, Mason et al. (2008) demonstrated that func-

tional diversity indices may reveal changes in community

assembly processes along an environmental gradient, suggest-

ing that these indices may be robust in the face of complex

processes structuring communities.

Conclusion

In the study of relationships connecting functional diversity,

community ecology and ecosystem processes, it is crucial to

measure each of the complementary components with an

appropriate index. Having established a set of appropriate

indices, comparing the observed behaviour of each func-

tional diversity index to that expected at random would be

of great interest in testing whether communities are

dominated by a particular assembly process. Significant

departure from random expectation might indicate either

that limiting similarity (index values higher than expected

by chance, e.g. Cornwell, Schwilk & Ackerly 2006) or niche

filtering (index values lower than expected by chance) is the

dominant process. However, assembly processes can inter-

act to give a complex pattern or even a neutral one (Helmus

et al. 2007). Therefore, investigating community structure

with complementary methods such as phylogenetic related-

ness (Webb 2000; Webb et al. 2002) through co-occurrence

patterns (Cavender-Bares et al. 2004) or abundance distri-

bution (Anderson, Lachance & Starmer 2004) appears

indispensable to avoid spurious conclusions.

Considering both a multifaceted framework and assem-

bly processes would allow more accurate predictive models

and tools in the comprehension of how community struc-

ture is related to ecosystem functioning and opens new

fields of research. Specifically, it provides a clear frame-

work for addressing questions such as how environmental

constraints influence functional diversity and how the three

components of functional diversity interact with ecosystem

processes such as the productivity, resilience or resistance

to invasion.
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