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INTRODUCTION

Coastal ecosystems, including estuaries and la -
goons, sustain key services but are severely affected
by human activities (Barbier et al. 2011). Changes in
environmental conditions (e.g. global warming,
eutrophication), in addition to direct ex ploitation of
resources (e.g. fish, bivalves), modify the biodiversity
of coastal communities (e.g. Villeger et al. 2010),
which, in turn, affects ecosystem functioning and sta-
bility (Raffaelli et al. 2003, Solan et al. 2004, Worm et
al. 2006, Bracken et al. 2008). Therefore it is urgent to
better assess the diversity of species roles in coastal
ecosystems. Indeed, the functional diversity of spe-

cies communities is likely to be a better predictor
than species richness per se for the effect of commu-
nities on coastal ecosystem functioning (Waldbusser
et al. 2004).

Coastal macrofauna is marked by a large taxo-
nomic diversity with several phyla of invertebrates
and several classes of vertebrates. All these hetero-
trophic organisms ingest food (alive or dead). Via the
digestion process a small part of it is assimilated into
biomass while the major part is catabolised for the
generation of energy. Catabolic waste products are
excreted mainly as ammonium and phosphate, into
the water column (Wright 1995, Vanni 2002). Thus,
aquatic macrofauna contributes to nutrient cycling
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by transferring the essential elements nitrogen (N)
and phosphorus (P), bound in the organic matter of
living organisms and detritus, into the inorganic pool
available to primary producers (Dame et al. 1991,
Cockcroft & McLachlan 1993, Vanni 2002).

Nutrient recycling by macrofauna has been widely
investigated in freshwater ecosystems (e.g. Vanni
2002, Vanni et al. 2002, Hood et al. 2005, Torres &
Vanni 2007, McIntyre et al. 2008), while only few
studies have focused on marine ecosystems (Meyer
& Schultz 1985, Haertel-Borer et al. 2004, Layman
et al. 2011). Organisms differ in their ability to recy-
cle nutrients (Vanni et al. 2002, Hood et al. 2005), as
a result of the imbalance between their diet (i.e.
food quality and quantity) and their requirement for
growth (i.e. N and P contents of their biomass, and
growth efficiency). These interspecific differences
in recycling ability coupled to species biomass
determine the role of each species in ecosystem-
wide nutrient cycling (e.g. McIntyre et al. 2008,
Layman et al. 2011). In the context of marine bio -
diversity loss (Worm et al. 2006, Bracken et al.
2008), it is thus crucial to obtain knowledge of
respective abilities of coastal macro-organisms to
recycle nutrients, particularly N and P, which are
the most important for  primary production (Elser et
al. 2007) and which ultimately sustain fisheries
catches (Chassot et al. 2010).

Here we explored, through the measure of excre-
tion fluxes, the ability of dominant macrofaunal spe-
cies to recycle nitrogen and phosphorus in a coastal
marine lagoon. We then tested and explained intra-
and interspecific differences in ammonium and phos-
phates excretion rates using biological traits.

MATERIALS AND METHODS

Sampling

The experiment was carried out in a shallow lagoon
at the French Mediterranean coast (Thau lagoon,
43° 26’ 51’’ N, 3° 39’ 6’’ E). We only targeted the
species present in the littoral habitats of this lagoon.
Nektonic species were sampled using a beach seine
(length: 25 m; height: 1.2 m; stretched mesh: 12 mm).
Benthic mollusks were picked by hand in the sub-
strate near the shoreline (depth <0.5 m).

The experiment was conducted between 23 June
and 3 July 2009. Air temperature was 26°C in the
morning to 35°C in the afternoon. Water temperature
varied between 28 and 30°C. Salinity was 35 psu.

A total of 521 individuals belonging to 12 species
was collected (Table 1). These species included 3
bivalves, 1 cephalopod, 1 crustacean (shrimp), and 7
fishes (representing 7 families). Overall, the sampled
individuals were small (Table 1), being either adults
of small species (e.g. mollusks, shrimp, goby) or juve-
niles of migratory larger species (seabream, mullet).

Nutrient excretion rates

The general protocol used to assess nutrient excre-
tion by macro-organisms follows that of Vanni et al.
(2002). Captured specimens were placed in plastic
bags filled with filtered (5 μm) and UV-sterilized sea-
water (from the IFREMER Palavas aqua culture
research station) and stored at the lagoon water tem-
perature. Use of seawater with very low concentra-

Species Class Family No. of ind. No. of Body mass Time Volume of 
per replicate replicates (g) (min) water (l)

Cerastoderma edule Bivalvia Cardiidae 3−5 15 2.4 ± 0.2 (1.5−4.5) 51 ± 2 0.5
Loripes lacteus Bivalvia Lucinidae 20 14 0.3 ± 0.01 (0.2−0.4) 57 ± 3 0.5
Ruditapes decussatus Bivalvia Veneridae 5 14 2.7 ± 0.2 (1.6−4.4) 56 ± 3 0.5
Sepiola affinis Cephalopoda Sepiolidae 1 2 0.7 ± 0.4 (0.3−1.1) 98 ± 25 0.5
Palaemon serratus Malacostraca Palaemonidae 1 6 1.2 ± 0.1 (0.8−1.6) 75 ± 7 1
Atherina boyeri Actinopterygii Atherinidae 5 3 1.9 ± 0.2 (1.6−2.2) 66 ± 2 5
Liza aurata Actinopterygii Mugilidae 1 14 4.1 ± 0.2 (3.3−6.4) 70 ± 4 2
Pomatoschistus microps Actinopterygii Gobiidae 1 9 4.4 ± 0.6 (2.1−7.8) 69 ± 6 2
Salaria pavo Actinopterygii Bleniidae 1 13 4.3 ± 0.4 (2.3−6.8) 77 ± 4 2
Sparus aurata Actinopterygii Sparidae 1 11 3.8 ± 0.2 (3.0−4.9) 70 ± 4 2
Symphodus cinereus Actinopterygii Labridae 1 13 6.5 ± 1.0 (2.8−14.8) 73 ± 4 2
Syngnathus abaster Actinopterygii Syngnathidae 1 3 0.6 ± 0.1 (0.5−0.7) 78 ± 3 1

Table 1. Species studied and experiment settings. For the experimental specimens, the mean body mass ± SD and the range 
(in parentheses) are given
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tion of micro-organisms prevents bias in estimation
of nutrient excretion rates by macro-organisms
(Vanni 2002). Bag volume depended on species size,
and ranged from 0.5 to 2 l (Table 1). These plastic
bags were then bound between 2 floating tubes
(polystyrene foam) and immediately immersed in a
big plastic tank filled with lagoon water and set up in
the lagoon. Thus, water temperature inside the bags
was kept at that of lagoon water. A clean glass plate
(diameter: 18 cm) was placed inside each bag as a
support for the benthic species.

Individuals were kept in the bags for ~1 h (Table 1).
This length of time and the volume of water were
determined to ensure that final nutrient concentra-
tions in the water were sufficient to be accurately
measured and that starvation time was negligible
(Whiles et al. 2009). The chosen volume was too large
for measuring excretion rates of individual bivalves.
Therefore, 3, 5, and 20 individuals of Cerastoderma
edule, Ruditapes decussates, and Loripes lacteus,
respectively, were placed in the bags (Table 1). Athe-
rina boyeri individuals kept alone in plastic bags died
after a few minutes, probably because of the stress.
For this pelagic fish species, we carried out 3 repli-
cates with 5 individuals each using plastic buckets
filled with 5 l of filtered seawater and immersed in
the lagoon. For other species, no obvious signs of
stress were observed.

Although experimental conditions may induce bias
through stress by change in locomotion or feeding
activities, this method is known to be reliable to
assess excretion rates, since no strong discrepancies
have been observed between this field method and
the  predicted rates using bioenergetic models (Vanni
2002).

Specimens were removed from bags and weighed
using an electronic balance (0.1 g precision). Mol-
lusks were dissected prior to weighting and only
flesh wet mass was considered. The ambient water
from the bag containing the excretions of the speci-
men was immediately filtered using a Whatman
GF/F filter (pore size 0.45 μm) and stored in an ice-
box before being frozen in the lab. After thawing, the
water of each sample was then analyzed for ammo-
nium (NH4

+) and ortho phosphate (PO4
3−) with in -

dophenol-blue and phosphomolybdate colorimetric
methods, respectively (Aminot & Kerouel 2004)
using a UV-visible light spectrophotometer (Cary
100;  Varian).

During each series of incubations, 2 replicates of 1 l
of filtered seawater were left ~1 h in a plastic bag and
then sampled as a control for potential contamination
by air or handling.

Per capita excretion rates (ER) for ammonium and
phosphate (μmol ind.−1 h−1) were computed for each
replicate as follows (Vanni et al. 2002):

with V being the volume (l) of the water in the plastic
bag and t the time (h) that the n individual(s) stayed
in it.

Ibag is the final concentration of ion I in the water
(μmol l−1) and Icontrol the final concentration observed
for the control.

We also computed mass-specific excretion rates by
dividing per capita excretion rates by body mass of
individuals (Vanni et al. 2002). These variables corre-
spond to the molar amount of ammonium and phos-
phate excreted by organisms per unit body mass and
per unit time, thus allowing us to compare nutrient
cycling ability of species having different masses
(Meyer & Schultz 1985, Vanni et al. 2002). Body mass
and excretion rates generally exhibit a large range,
and we thus scaled them using a log10 transformation
(Vanni et al. 2002).

Statistical analyses

The linear relationship between log10-transformed
per capita excretion rate and the log10-transformed
mean body mass of individuals present in each repli-
cate was tested using linear models (LM) for each
species and each nutrient (Fox 2008). The inter -
specific differences in per capita excretion rates were
tested using the non-parametric Kruskal-Wallis test.

Then we tested how several biological factors con-
tributed to the differences in mass-specific excretion
rates. To this aim we used generalized boosted mod-
els (GBM; function ‘gbm’ from the gbm R library).
The GBM method belongs to the boosted regression
tree (BRT) family and uses 2 algorithms: regression
trees and the stochastic gradient boosting technique
(Friedman 2001). This method tests all the combi -
nations of factors and provides, for each factor, the
percentage of significant models that take it into
account. The advantage of GBM over linear multi-
regression models is that they make no assumption of
linearity and are thus efficient for the detection of
threshold effects of factors. This recent method has
been successfully applied in ecology (e.g. Jalabert et
al. 2010). GBM analyses were carried out on ammo-
nium and phosphate excretion rates using body mass
(log transformed), species identity, taxonomic class
(bi valve, crustacean, cephalopod, fish), life-stage

ER
–

I
bag control=

× ×
I I
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(juvenile or  adult), and time of incubation as predic-
tive variables. To illustrate the results of these GBM,
we performed regression tree analyses (using the
function ‘tree’ from the tree R library).

RESULTS

We carried out the excretion experiment on 148
replicates. A total of 23 replicates showed no PO4

3−

as the measured signal was below the limit of detec-
tion (0.1 μmol l−1). Using a selection based on inter-

quartile range, 8 replicates were detected as outliers
compared to the replicates of the same species.
These 31 replicates were removed prior to statistical
analyses which were thus conducted on 117 repli-
cates (Fig. 1).

Per capita excretion rates show intraspecific vari-
ability for both ammonium and phosphate (Fig. 1).
However, this intraspecific variability was globally
lower than interspecific differences for ammonium
and phosphate per capita excretion rates (Kruskal-
Wallis test on log10-transformed values; df = 11, p <
0.001 for both nutrients).

300

Fig. 1. (a,b,c) Relation between body mass and per capita ammonium (NH4
+) and phosphate (PO4

3−) excretion rate (ER). 
(d,e,f) Means (and associated SEs) by species 
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For both nutrients, relationships between organism
body mass and per capita excretion rate were signifi-
cant (log10-transformed values, Spearman’s rank test:
ρ = 0.812, p < 0.001 for ammonium; ρ = 0.744, p <
0.001 for phosphates). Similar analyses  carried out
only on fish revealed a weaker positive correlation
between individual body mass and ammonium (ρ =
0.714, p < 0.001) or body mass and phosphate (ρ =
0.398, p < 0.001) excretion rates. The correlation be-
tween the 2 nutrient excretion rates was significantly
positive (ρ = 0.894, p < 0.001) but was also lower (ρ =
0.522, p < 0.001) when considering only fish.

Linear model analyses at the intraspecific level
revealed a significant positive effect of body mass on
the ammonium excretion rate for 5 fish species and
for the shrimp Palaemon serratus (Table 2). Body
mass had a significant positive effect on the phos-
phate excretion rate for only 2 species: the blenny
Salaria pavo and the mullet Liza aurata (Table 2).

Generalized boosted models demonstrate the pre-
dominance of the species factor on the level of both
ammonium and phosphate excretion rates. The body
mass and class factors play a role in less than one-

fourth of the models (Table 3). Time of experiment
and life-stage (i.e. adult or not) affected excretion
rates only marginally.

Finally, the regression tree discriminated 2 large
groups for the ammonium excretion rate (Fig. 2). The
4 mollusks species have lower rates than the shrimp
and the 8 fishes. This latter group is split only by
body mass. Similarly, phosphate excretion rate was
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Species  Per capita ER NH4
+               PO4

3–               Mass-specific ER 
                  (μmol h−1)                    a (SE)           b (SE)       R²           a (SE)             b (SE)         R² (μmol g−1 h−1)
                                NH4

+           PO4
3–                                                                                                                             NH4

+               PO4
3−

Cerastoderma   0.78 ± 0.07   0.04 ± 0.01   −0.19 (0.09)   0.18 (0.24)   0.04    −1.77 (0.18)    0.80 (0.46)   0.19       0.15 ± 0.04     0.03 ± 0.00
edule

Loripes               0.04 ± 0.01   0.01 ± 0.00   −1.63 (0.93)  −0.14 (1.75) 0.00    −2.25 (0.56)   −0.11 (1.05)  0.00       0.36 ± 0.04     0.02 ± 0.00
lacteus

Ruditapes         0.66 ± 0.08   0.08 ± 0.01   −0.63 (0.20)   0.95 (0.46)   0.26    −1.31 (0.17)    0.39 (0.39)   0.08       0.25 ±0.03      0.03 ± 0.00
decussatus

Sepiola               1.17 ± 0.43   0.14 ± 0.07                                                                                                                    1.95 ± 0.54     0.22 ± 0.04
affinis

Palaemon           4.18 ± 0.79   0.12 ± 0.02     0.49 (0.01)     1.75 (0.06)   0.99    −0.99 (0.08)    0.85 (0.63)   0.32       3.43 ±0.29      0.10 ±0.01
serratus

Atherina           9.82 ± 0.98   0.49 ± 0.08     1.29 (0.17)   −1.05 (0.59) 0.76     0.12 (0.36)    −1.56 (1.24)  0.61       5.22 ± 0.91     0.26 ± 0.06
boyeri

Liza                   22.26 ± 3.78 1.29 ± 0.15   −0.25 (0.27)   2.54 (0.45)   0.73    −0.80 (0.28)    1.44 (0.45)   0.46       5.13 ± 0.57     0.31 ± 0.03
aurata

Pomatoschistus 12.65 ± 1.72 0.34 ± 0.05     0.44 (0.10)     1.02 (0.16)   0.85    −0.67 (0.23)    0.29 (0.36)   0.08       2.88 ± 0.18     0.09 ± 0.02
microps

Salaria               15.82 ± 2.87 0.50 ± 0.14     0.53 (0.21)     1.00 (0.34)   0.45    −1.37 (0.28)    1.54 (0.45)   0.51       3.66 ±0.44      0.10 ±0.02
pavo

Sparus               23.89 ± 2.72 0.38 ± 0.06     0.46 (0.29)     1.56 (0.5)   0.52    −0.70 (0.64)    0.39 (1.10)   0.01       6.20 ± 0.52     0.10 ± 0.02
aurata

Symphodus     20.14 ± 2.91 0.59 ± 0.07     0.58 (0.11)     0.88 (0.13)   0.80    −0.69 (0.20)    0.54 (0.26)   0.29       3.16 ± 0.20     0.10 ± 0.01
cinereus

Syngnathus       2.05 ± 0.25   0.14 ± 0.01     0.50 (0.21)     0.82 (0.84)   0.49    −0.94 (0.17)   −0.34 (0.69)  0.20       3.53 ± 0.32     0.25 ± 0.04
abaster

Table 2. Ammonium (NH4
+) and phosphate (PO4

3−) excretion rates (ER; means ± SD) for the studied species. The first 2 columns present
per capita ER. The third to eighth columns present coefficients estimates (and associated SEs) and goodness of fit of the linear re -
gressions: log10(ER) = a + b × log10(mass). Statistically significant models are in bold (p < 0.05). The last 2 columns present mass-specific 

excretion rates

Factor Excretion rate
NH4

+ PO4
3−

Species 60.75 69.94
Body mass (log10) 24.30 16.62
Class 14.89 12.53
Time 0.06 0.85
Life-stage <0.01 0.06

Table 3. Generalized Boosted Models explaining ammo-
nium (NH4

+) and phosphate (PO4
3−) excretion rates (log10-

transformed values). Values (explanatory variables are
ranked by decreasing order of importance) are percentages
of significant models that account for the factor considered 

among all the models tested
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lower for the 3 bivalves, especially for Loripes lac-
teus. Among nektonic species, the mullet Liza aurata
had higher rates than the 9 other species.

DISCUSSION

We found a significant effect of body mass on per
capita excretion rates at the intraspecific level for
most of the fishes but not for the 3 bivalve species.
This finding may be explained by the small size
range considered for mollusks, as previous studies
found significant differences for other mollusk spe-
cies (e.g. Arnott & Vanni 1996). For fish, it would be
of interest to assess excretion rates of adults of the 2
species studied only at their juvenile stage (i.e. thin-
lip mullet Liza ramada and gilthead seabream
Sparus aurata) to assess whether this relationship
stands across life stages.

We observed positive relations between body mass
and excretion rates at the interspecific level, which
confirm previous findings on fish (e.g. Torres & Vanni
2007). However, these correlations were stronger
when considering the 3 classes of invertebrates and
fish than when considering only the 8 fish species.
Indeed, the 3 bivalve species were smaller and had
lower excretion rates than fish (Fig. 1). However,
 statistical analyses confirmed that the taxonomic fac-
tor was more discriminant than body mass itself
(Table 3, Fig. 2).

Mean mass-specific excretion rates (Table 2) con-
firm this finding as fishes tend to have excretion rates
per unit of mass 10× higher than mollusks for ammo-
nium and 5× higher for phosphate. Therefore, at
equivalent size, fishes are excreting more nutrients
than mollusks do, while among fishes, Sparus aurata
and juvenile Liza aurata have the highest mass-spe-
cific excretion rates for ammonium and phosphate,
respectively. A study conducted in intertidal salt
marsh creeks on the Atlantic USA coast also found
that shrimps excrete lower nutrient levels per unit of
mass than fishes (Haertel-Borer et al. 2004). More in-
terestingly, the fish species excreting the highest
level of ammonium per unit of mass, the pinfish
Lagodon rhomboides, is functionally similar to S. au-
rata (i.e. a bentho-pelagic and invertivorous  species),
and the fish excreting the most phosphate, the At-
lantic silverside Menidia menidia, is similar to Athe-
rina boyeri (a pelagic and planktivorous  species).

To go further it would be necessary to compare
excretion rate differences from a bioenergetic per-
spective by accounting for N and P body concentra-
tions and to compare them with food item composi-
tion (Vanni et al. 2002, Torres & Vanni 2007). Indeed,
excretion rates are driven by ecophysiological con-
straints and reflect the imbalance between N and P
inputs from food and the demand on them for meta -
bolism and growth. For instance, vertebrates tend to
have a higher body P concentration than macro-
invertebrates because of the high P content in bones
(Elser et al. 1996). Even among fish species, strong
differences exist across families with different
anatomies and diets (Vanni et al. 2002, Hood et al.
2005). In addition, analyzing the biological causes of
the differences in excretion rates also deserves inves-
tigation at the intraspecific level for species exhibit-
ing marked ontogenetical changes affecting both
diet and anatomy. In general, for the upscaling of
excretion rates to the ecosystem functioning, it is
necessary to assess whether body mass has an iso-
metric or allometric effect on excretion for the differ-
ent species (McIntyre et al. 2008).
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Fig. 2. Regression tree for (a) ammonium (NH4
+) and

(b) phosphate (PO4
3−) excretion rates (log10-transformed 

values). The mean for each sub-group is indicated

A
ut

ho
r c

op
y



Villéger et al.: Nutrient recycling by macro-organisms

More generally, while the assessment of macro-
fauna excretion rates in the field and their upscaling
is a necessary first step toward better understanding
their contribution to nutrient recycling, the second
step is to explicitly test the contri bution of the differ-
ent species through in situ  (abundance manipulation)
or ex situ (mesocosm) experiments. Such experiments
would also offer the opportunity to assess the effect of
translocation of nutrients by the movement of organ-
isms’, be they vertical between the sediment and the
water column (Schaus & Vanni 2000) or horizontal be-
tween different habitats (Meyer & Schultz 1985).
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